
Object Oriented
Programming with
Perl and Moose

Dave Cross
dave@mag-sol.com

8th February 2016

Schedule

 09:45 – Begin
 11:15 – Coffee break (15 mins)
 13:00 – Lunch (60 mins)
 14:00 – Begin
 15:30 – Coffee break (15 mins)
 17:00 – End

8th February 2016

What We Will Cover

 Introduction to Object Oriented
programming

 Overview of Moose
 Object Attributes
 Subclasses
 Object construction

8th February 2016

What We Will Cover

 Data types
 Delegation
 Roles
 Meta-programming
 Alternatives to Moose
 Further information

Object Oriented Programming

8th February 2016

What is OOP?

 “Traditional” programming is procedural
 Subroutines work on variables
 my $twelve = regenerate($eleven);

 Variables are dumb
 Just stores for data

8th February 2016

What is OOP?
 Object Oriented programming inverts this
 Variables are objects
 Objects can carry out certain processes

 Called methods
 my $twelve = $eleven->regenerate();

 Objects are intelligent
 Objects know what methods they can carry

out

8th February 2016

Some Concepts
 A Class is a type of intelligent variable

 e.g. Time Lord

 An Object is an instance of a class
 e.g. The Doctor

 A Method is an action that an object does
 e.g. Regenerate

 An Attribute is a piece of data in an object
 e.g. Name

8th February 2016

Some Concepts

 A class contains a number of methods
 An object is of a particular class
 The class defines the behaviour of an object
 An object has many attributes

 Data items

 A class can also have attributes
 Class-wide data items

8th February 2016

Methods

 Methods can be either class methods or
object methods

 Class methods are called on a class
 my $doctor = TimeLord->new;

 Object methods are called on an object
 $doctor->regenerate;

8th February 2016

Constructors

 All classes need a constructor method
 Creates a new object of that class
 Usually a class method
 Often called new
 my $doctor = TimeLord->new;

8th February 2016

Constructors

 A Class might have multiple constructors
 my $doctor = TimeLord->new;

 my $flesh_dr =
 TimeLord->clone($doctor);

 A constructor might be an object method
 my $flesh_dr = $doctor->clone;

8th February 2016

Accessors & Mutators

 Access object attributes with an accessor
method

 say “The time lord's name is “,
 $doctor->get_name;

 Change an attribute with a mutator method
 $doctor->set_age(
 $doctor->get_age + 1
);

8th February 2016

Accessor/Mutators

 Accessors and mutators are often the same
method

 say “The time lord's name is “,
 $doctor->name;

 $doctor->age($doctor->age + 1);

 Checks number of parameters
 Reacts appropriately

8th February 2016

Accessor/Mutators

 Which to choose?
 Perl Best Practices says get_foo/set_foo
 I like one method called foo
 No firm rules
 Pick one
 Stick with it

8th February 2016

Subclasses

 A subclass is a specialisation of a class
 “Alien” is a class
 “Dalek” is one possible subclass
 Avoid reimplementing shared methods

8th February 2016

Subclasses

 Subclasses alter behaviour of their parent
classes

 Add methods
 Override existing methods
 Add attributes
 Override existing attributes

Object Oriented Perl

8th February 2016

OO Perl

 Three rules of OO Perl
 A class is a package
 An object is reference
 A method is a subroutine

8th February 2016

A Class is a Package

 Same as any other package
 Contains subroutines

 Methods

 Contains variables
 Class attributes

8th February 2016

An Object is a Reference

 Usually a reference to a hash
 Hash keys are attribute names
 Hash values are attribute values
 Actually a “blessed” hash

 So it knows what class it is

8th February 2016

A Method is a Subroutine

 Just like any other subroutine
 Some rules on parameters
 First parameter is class name or object

reference
 Some differences in calling
 Arrow notation

 $doctor->name()

8th February 2016

Calling Methods

 Methods are called using arrow notation
 Class methods

 TimeLord->new();

 Object methods
 $doctor->regenerate();

8th February 2016

Calling Methods

 Perl rewrites the method call
 Invocant passed as first argument
 TimeLord->new();

 TimeLord::new('Timelord');

 $doctor->regenerate();

 TimeLord::regenerate($doctor);

8th February 2016

Simple Class

 package Alien; # package

sub new { # subroutine
 my ($class, $name) = @_;

 # hash reference
 my $self = { name => $name };

 return bless $self, $class;
}

8th February 2016

Simple Class

 sub name { # subroutine
 my ($self, $name) = @_;

 if (defined $name) {
 $self->{name} = $name;
 }

 return $self->{name}; # hash ref
}

1;

8th February 2016

Using Our Class

 use Alien;

my $alien = Alien->new('Mork');

say $alien->name; # prints Mork

$alien->name('Mork from Ork');

say $alien->name;
prints Mork from Ork

8th February 2016

Your Turn

 Create a class using the Alien class as a base
 Create a program that uses your class
 Add at least one other method to your class

Moose

8th February 2016

Moose

 Moose is a Modern Object System for Perl 5
 Based on Perl 6 object system
 More powerful
 More flexible
 Easier

8th February 2016

Simple Moose Class

 package Alien;
use Moose;

has name => (
 is => 'rw',
 isa => 'Str',
);

no Moose;
__PACKAGE__->meta->make_immutable;

8th February 2016

What's Going On?

 use Moose;

 Loads Moose environment
 Makes our class a subclass of Moose::Object
 Turns on use strict and use warnings

8th February 2016

Declarative Attributes

 has name => (
 is => 'rw',
 isa => 'Str',
);

 Creates an attribute called 'name'
 Makes it read/write
 Must be a string

8th February 2016

Read/Write Attributes

 Moose creates methods to access/alter
attributes

 $alien->name('Strax');
say $alien->name;

 The 'is' property controls how they work
 'rw' : read and write
 'ro' : read only

8th February 2016

Private Attributes

 Use is => 'bare' for attributes that aren't
readable

 No methods are created
 Direct hash access
 $alien->{name} =
 'Commander Strax';

8th February 2016

Other Methods

 Not all methods are constructors or
accessors/mutators

 Write other methods as usual
 First parameter is object reference

8th February 2016

Other Methods
 package Timelord;

...

sub regenerate {
 my $self = shift;

 my $curr = $self->regeneration;
 $self->regeneration(++$curr);
}

8th February 2016

Housekeeping
 Moose classes carry a lot of baggage
 We can (and should) turn some of it off
 no Moose;

 Remove Moose exports from your namespace

 See also namespace::autoclean
 __PACKAGE__->meta->make_immutable;

 No more changes to class definition

 Performance improvements

8th February 2016

Using Our Class

 From the user's perspective, nothing changes
 Use it just like other Perl classes
 use Alien;

my $strax = Alien->new(
 name => 'Strax'
);
say $strax->name;

 Named parameters are good

8th February 2016

Your Turn

 Create new directory and copy the Alien test
program into it

 Create a new Moose-based Alien.pm
 Does the test program work?
 What do you need to change?
 Add at least one other method

Subclasses

8th February 2016

Subclassing

 A subclass is a specialisation of a superclass
 More specific behaviour
 New attributes
 New methods
 Overriding superclass methods and

attributes

8th February 2016

Subclassing

 Not all aliens are the same
 package Dalek;
use Moose;
extends 'Alien';

has accuracy => (
 isa => 'Num',
 is => 'rw',
);

8th February 2016

Subclassing
 sub exterminate {
 my $self = shift;

 say “EX-TERM-IN-ATE”;
 if (rand < $self->accuracy) {
 say “$_[0] has been exterminated”;
 return 1;
 } else {
 return;
 }
}

8th February 2016

Using Subclasses
 use Dalek;

my $karn = Dalek->new(
 name => 'Karn', accuracy => 0.9,
);

say $karn->name;
$karn->exterminate('The Doctor');

8th February 2016

Your Turn

 Create a subclass of your class
 Add a new attribute
 Add a new method which uses the new

attribute

8th February 2016

Overriding Methods

 Daleks have a different way of using names
 A Dalek's name is always “Dalek

Something”
 Need to override the name method from

Alien
 But we still want to get the name itself from

Alien's method

8th February 2016

Method Modifiers

 Moose has a declarative way to modify
methods from your superclass

 before : run this code before the superclass
method

 after : run this code after the superclass
method

 around : run this code around the superclass
method

8th February 2016

Before and After

 Methods defined with 'before' and 'after' are
called before or after the parent's method

 before name => sub {
 say 'About to call name()';
};

 Doesn't interact with parent's method

8th February 2016

Around

 Methods defined with 'around' are called
instead of parent's method

 It's your responsibility to call parent's
method

 Slightly different parameters
 Original method name
 Object reference
 Any other parameters

8th February 2016

Dalek Names

 around name => sub {
 my $orig = shift;
 my $self = shift;

 return 'Dalek ' .
 $self->$orig(@_);
};

8th February 2016

Overriding Methods

 Simpler way to override parent methods
 override name => sub {
 my $self = shift;

 return 'Dalek ' . super();
};

 Use the super keyword to call parent
method

 Passes on @_

8th February 2016

Your Turn

 Add a method which overrides a method in
the superclass

 Try both “around” and “override”

Attributes

8th February 2016

Declarative Attributes

 Attributes are declared in a class using the
has keyword

 This is different to “classic” Perl OO
 Where attributes are created by the presence of

accessor methods

 Attributes have a number of properties
 Properties define the attribute

8th February 2016

Properties
 has name => (
 isa => 'Str',
 is => 'rw',
);

 'isa' and 'is' are properties
 Many other options exist

8th February 2016

is
 is : defines whether you can read or write

the attribute
 Actually defines whether accessor method is

created
 And how it works

 $obj->ro_attr('Some value');

 “Cannot assign a value to a read-only
accessor”

8th February 2016

Private Attributes

 Use is => 'bare' for private attributes
 No accessor created

 Still get access through the object hash
 has private => (
 is => 'bare'
);

 $self->private; # Error

 $self->{private};

8th February 2016

Accessor Name

 “is” is actually a shortcut for two other
properties

 reader and writer
 has name => (
 reader => 'get_name',
 writer => 'set_name',
);

8th February 2016

Accessor Name

 Now we don't have a method called name
 say $obj->name; # Error

 Need to use get_name
 say $obj->get_name;

 And set_name
 $obj->set_name('New Name');

8th February 2016

Best Practices

 What is best practice
 One method (name)

 Two methods (get_name, set_name)

 Who cares?
 Choose one

 And stick with it

 Perl Best Practices says two methods
 See MooseX::FollowPBP

8th February 2016

Required Attributes

 By default Moose attributes are optional
 Make them mandatory with required
 has name => (
 required => 1,
);

 my $alien = Alien->new;

 “Attribute (name) is required at constructor
Alien::new”

8th February 2016

Attribute Defaults
 Set a default for missing attributes
 has accuracy => (
 default => 0.5,
);

 Or a subroutine reference
 has accuracy => (
 default => sub { rand },
);

8th February 2016

Attribute Builder
 Define a builder method instead of a default

subroutine
 has accuracy => (
 builder => '_build_accuracy',
);

 sub _build_accuracy {
 return rand;
}

 Easier to subclass

8th February 2016

Predicate
 Define a method to check if an attribute has

been set
 Check for defined value

 has name => (
 isa => 'Str',
 predicate => 'has_name',
);

 No default

8th February 2016

Using Predicate

 Use predicate method to check if an attribute
is set

 if ($random_alien->has_name) {
 say $random_alien->name;
} else {
 say 'Anonymous Alien';
}

8th February 2016

Clearer
 Define a method to clear an attribute

 Sets to undef
 has name => (
 is => 'Str',
 clearer => 'clear_name',
);

 No default

8th February 2016

Using Clearer

 Use clearer method to clear an attribute
 if ($anon_alien->has_name) {
 $anon_alien->clear_name;
}

8th February 2016

Attribute Types

 Set the type of an attribute with isa
 has accuracy => (
 isa => 'Num',
);

 Validation checks run as value is set
 We'll see more about types later

8th February 2016

Aggregate Attributes

 You can define aggregate attributes
 isa => 'ArrayRef'

 Reference to array (elements are any type)
 isa => 'ArrayRef[Int]'

 Reference to array (elements are integers)

8th February 2016

Array Example
 Daleks like to keep track of their victims
 has victims (
 is => 'rw',
 isa => 'ArrayRef[Str]',
 default => sub { [] },
);

 And in the exterminate() method
 push $self->victims, $_[0];

8th February 2016

Array Example
 sub brag {

 my $self = shift;

 if (@{$self->victims}) {
 say $self->name, ' has killed ',
 scalar @{$self->victims},
 ' enemies of the Daleks';
 say 'Their names are: ',
 join(', ',
 @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Hash Attributes
 Moose also supports hash ref attributes
 has some_attribute => (
 isa => 'HashRef[Str]',
 is => 'rw',
);

8th February 2016

Easier Aggregates
 Attribute traits can make it easier to use

aggregate attributes
 We will revisit this later

8th February 2016

Lazy Attributes
 Some attributes are rarely used
 And can be complex to construct
 It's a waste of resources to build them before

they are needed
 Mark them as lazy
 And define a build method

8th February 2016

Lazy Attributes
 has useragent => (
 is => 'LWP::UserAgent',
 lazy => 1,
 builder => '_build_ua',
);

 sub _build_ua {
 return LWP::UserAgent->new(...);
}

 $self->useragent->get(...);
creates object

8th February 2016

Triggers
 A trigger is a subroutine that is called when

an attribute's value changes
 Subroutine is passed the old and new values
 has name => (
 trigger => \&name_change,
);

 sub name_change {
 my ($self, $new, $old) = @_;
 warn
 “Name changed from $old to $new”;
}

8th February 2016

Your Turn

 Add more attributes to your class
 Experiment with various properties

 required

 isa

 default

 Add an array or hash attribute

8th February 2016

Overriding Attributes
 Subclasses can override attribute properties
 Use '+' on the subclass attribute definition
 has '+name' => (
 ...
);

 Various properties can be changed
 default, coerce, required, documentation, lazy,

isa, handles, builder, metaclass, traits

8th February 2016

Sontaran Names
 Many aliens don't have names
 The 'name' attribute in Alien.pm doesn't have

the 'required' property
 Sontarans do use names
 package Sontaran;
has '+name' => (
 required => 1,
);

8th February 2016

More Types
 Attributes can also be objects
 has useragent => (
 is => 'rw',
 isa => 'LWP::UserAgent',
);

 Or a union of types
 has output => (
 is 'rw',
 isa => 'Object | Filehandle',
);

8th February 2016

Attribute Delegation

 Pass method calls to attributes
 Assumes the attributes are objects

 Defined using the 'handles' property
 Defined with an array or hash reference

8th February 2016

Delegation with Array

 Array contains list of method names
 Named methods are passed through to

attribute object
 has useragent => (
 is => 'rw',
 isa => 'LWP::UserAgent',
 handles => [qw(get post)],
);

8th February 2016

Delegation with Array

 $obj->get($url)

 Is now equivalent to
 $obj->useragent->get($url)

8th February 2016

Delegation with Hash

 Allows renaming of methods
 Hash contains key/values pairs of method

names
 Key is our object's method name
 Value is the method name in the attribute

object

8th February 2016

Delegation with Hash

 has useragent => (
 is => 'rw',
 isa => 'LWP::UserAgent',
 handles => {
 get_data => 'get',
 post_data => 'post',
 },
);

8th February 2016

Delegation with Hash

 $obj->get_data($url)

 Is now equivalent to
 $obj->useragent->get($url)

8th February 2016

Your Turn

 Override an attribute's properties in your
sub-class

 Add an attribute that is an object
 Delegate some methods to the attribute

object

Constructors

8th February 2016

Constructors

 A constructor is a special type of method
 It is usually a class method
 It returns a new object
 Moose classes prefer named parameters
 my $karn = Dalek->new(
 name => 'Karn', accuracy => 0.99,
);

8th February 2016

Default Constructor

 The default Moose constructor builds an
object from its parameters

 Checks for mandatory attributes
 Checks type constraints
 Returns an object

8th February 2016

Different Behaviour
 Some constructors need to do other

processing
 Not just build an object
 Sometimes it's convenient not to use named

parameters
 Use BUILD and BUILDARGS to override

Moose's default behaviour

8th February 2016

BUILDARGS
 More flexible parameters
 Take a parameter list convert it to named

parameters
 Commonly Daleks only need a name
 my $karn = Dalek->new(
 name => 'Karn'
);

 Why not simplify?
 my $karn = Dalek->new('Karn');

8th February 2016

Dalek Construction
 We can use BUILDARGS to build a list of

named parameters
 around BUILDARGS => sub {
 my $orig = shift;
 my $class = shift;

 if (@_ == 1 and !ref $_[0]) {
 return
 $class->$orig(name => $_[0]);
 } else {
 return $class->$orig(@_);
 }
}

8th February 2016

Default BUILDARGS
 We use 'around' to override BUILDARGS
 Allows superclass BUILDARGS to be

called
 Moose has a default (top level)

BUILDARGS
 Converts named params to a hash ref

 Alien->new(name => 'Mork')
 Alien->new({name => 'Mork'})

8th February 2016

Announcing Your Dalek

 When a new Dalek is created we want to
announce its name

 We can use the BUILD method
 After a new object is constructed, the

BUILD method is called
 Use it to carry out any additional processing

8th February 2016

BUILD Example

 sub BUILD {
 my $self = shift;

 say $self->name . ' is born.';
}

 This method is called every time a new
Dalek object is created

 Called after the object is constructed
 But before the new method returns

8th February 2016

Constructor Sequence

 BUILDARGS called
 Object constructed
 BUILD called

8th February 2016

Your Turn

 Add a BUILDARGS method that simplifies
the most common use of your constructor

 Add a BUILD method

Data Types

8th February 2016

Moose Data Types

 Moose types are arranged in a hierarchy
 Like class inheritance

 Easy to add our own types
 Easy to convert between types

8th February 2016

Type Hierarchy (Top)

 Any
 Item

 Bool
 Maybe[`a]
 Undef
 Defined

 Value
 Ref

8th February 2016

Type Hierarchy (Value)

 Value
 Str

 Num
 Int

 ClassName
 RoleName

8th February 2016

Type Hierarchy (Ref)

 Ref
 ScalarRef[`a]
 ArrayRef[`a]
 HashRef[`a]
 CodeRef
 RegexpRef
 GlobRef

 FileHandle
 Object

8th February 2016

Parameterised Types

 [`a] marks a parameter
 Maybe[Str]
 ScalarRef[Num]
 ArrayRef[Int]

 Array elements are integers

 HashRef[Filehandle]
 Hash values are filehandles

8th February 2016

Defining Types

 You can define your own data types
 Add constraints to existing types

8th February 2016

Defining Types

 Remember that Daleks have an accuracy
 Accuracy should be less than 1

 To give the Doctor a chance

 Define your own type
 subtype 'Accuracy'
 => as 'Num'
 => where { $_ < 1 };

8th February 2016

Using Types

 has accuracy => (
 isa => 'Accuracy',
);

 my $dalek = Dalek->new(
 accuracy => 1
);

 “Attribute (accuracy) does not pass the type
constraint because: Validation failed for
'Accuracy' with value 1 at constructor
Dalek::new”

8th February 2016

Type Definition Tips

 Name types within a project-specific
namespace
 MagSol::DrWho::Accuracy

 See Moose::Types for utilities to make type
definition easier

8th February 2016

Type Coercion

 Convert between types
 Automatically

8th February 2016

Dalek Birthdays

 Daleks like to keep track of their creation
date

 They store it in a DateTime object
 has creation (
 is => 'ro',
 isa => 'DateTime',
);

8th February 2016

Dalek Birthdays

 It's hard to create a Dalek with a creation
date

 Dalek->new(
 name => "Karn",
 creation => "2013-04-06"
)

 “2013-04-06” is not a DateTime object

8th February 2016

Dalek Birthdays

 Coerce a string into a DateTime
 coerce 'DateTime'
 => from 'Str'
 => via {
 DateTime::Format::Strptime->new(
 pattern => '%Y-%m-%d'
)->parse_datetime($_)
};

 This doesn't work either

8th February 2016

Dalek Birthdays

 Can't coerce into a standard type
 Need to create a subtype
 That's just how Moose works

8th February 2016

Dalek Birthdays
 subtype 'Creation'
 as => 'DateTime';

coerce 'Creation'
 => from 'Str'
 => via {
 DateTime::Format::Strptime->new(
 pattern => '%Y-%m-%d'
)->parse_datetime($_)
};

8th February 2016

Dalek Birthdays

 has creation => (
 isa => 'Creation',
 is => 'ro',
 coerce => 1,
};

 Dalek->new(
 name => "Karn",
 creation => "2013-04-06"
);

8th February 2016

Your Turn

 Add one of your own types to your class
 Add a type coercion to your class

Roles

8th February 2016

Inheritance

 Inheritance is a useful feature of OO
 Easy to create specialised subclasses
 Easy to construct complex hierarchies of

classes
 Not so easy to maintain

8th February 2016

Multiple Inheritance

 It's possible for one class to inherit from
many superclasses

 This can lead to “diamond inheritance”
 Class D subclasses classes B and C

 Classes B and C both subclass class A

 What happens?

 Complexity and confusion

8th February 2016

Roles

 Roles address this issue
 Cut-down classes that can be added into a

class
 Roles cannot be instantiated
 A class “does” a role
 Like interfaces or mixins

8th February 2016

Roles

 Roles change the classes they are used by
 Add methods
 Add attributes
 Enforce method definition

8th February 2016

Killer Aliens

 Not all aliens are killers
 Need a role for those who are
 Force classes to implement a kill() method

8th February 2016

Killer Aliens

 package Alien::Role::Killer;

use Moose::Role;

requires 'kill';

 package Dalek;

with 'Alien::Role::Killer';

8th February 2016

Killer Aliens

 Now we can't use the Dalek class until we
have defined a kill() method

 perl -MDalek -E'Dalek->new(“Karn”)

 'Alien::Killer' requires the method 'kill' to be
implemented by 'Dalek'

8th February 2016

Killer Daleks

 Let's cheat slightly
 Rename exterminate() to kill()
 Now we can use the Dalek class again

8th February 2016

Counting Victims

 Remember how Daleks keep track of their
victims?

 That behaviour really belongs in the
Alien::Role::Killer role

 All killer aliens keep track of their victims
 They just kill in different ways

8th February 2016

Counting Victims

 The class shouldn't know about the role's
attributes

 Remember this line from exterminate()
 push $self->victims, $_

 How do we deal with that?
 Use method modifiers

8th February 2016

Counting Victims

 In Alien::Role::Killer
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Bragging About Victims

 We also had a brag() method
 Used the victims array
 Move that into Alien::Role::Killer too

8th February 2016

Alien::Killer
 package Alien::Role::Killer;

use 5.010;
use Moose::Role;

requires 'kill';

has victims => (
 isa => 'ArrayRef[Str]',
 is => 'rw',
 default => sub { [] },
);

8th February 2016

Alien::Killer
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Alien::Killer
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name . ' has killed ' .
 scalar @{$self->victims} .
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Alien::Killer
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name . ' has killed ' .
 scalar @{$self->victims} .
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Dalek

 package Dalek;

use Moose;

extends 'Alien';
with 'Alien::Role::Killer';

...

8th February 2016

Killing People
 #!/usr/bin/perl

use strict;
use warnings;

use Dalek;

my $d = Dalek->new("Karn");

foreach (1 .. 10) {
 $d->kill("Timelord $_");
}
$d->brag;

8th February 2016

Killing People
 $./killing.pl

Dalek Karn is born.
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 2 has been exterminated
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 5 has been exterminated
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 9 has been exterminated
EX-TERM-IN-ATE
Timelord 10 has been exterminated
Dalek Karn has killed 4 enemies of the Daleks
Their names are: Timelord 2, Timelord 5, Timelord 9, Timelord 10

8th February 2016

Your Turn

 Write a role for your class
 Use the role from within your class
 Ensure your test programs all still work

8th February 2016

Nicer Aggregate Attrs

 We've seen aggregate attributes
 Array or hash

 victims is an example

 We have to know that these are references
 if (@{$self->victims})

 join ', ', @{self->victims}

 push $self->victims, $victim # Perl 5.14

 Can we make this easier?

8th February 2016

Nicer Aggregate Attrs

 We can add traits to aggregate attribute
definitions

 Add simple methods to manipulate
aggregate attributes

 Hiding complexity

8th February 2016

New Properties

 traits : Reference to a list of traits to add

 Trait must match attribute type
 ArrayRef / Array
 HashRef / Hash
 Etc.

 handles : Maps new class methods onto trait
methods

8th February 2016

Documentation

 Moose::Meta::Trait::Native

 List of types
 High level examples

 Moose::Meta::Attribute::Native::Trait::*

 Full documentation of trait methods

8th February 2016

Types

 Array
 Bool
 Code
 Counter
 Hash
 Number
 String

8th February 2016

Easier Victim Tracking
 has victims => (
 isa => 'ArrayRef[Str]',
 is => 'rw',
 default => sub { [] },
 traits => ['Array'],
 handles => {
 add_victim => 'push',
 all_victims => 'elements',
 count_victims => 'count',
 has_victims => 'count',
 },
);

8th February 2016

Easier Victim Tracking
 has victims => (
 isa => 'ArrayRef[Str]',
 is => 'rw',
 default => sub { [] },
 traits => ['Array'],
 handles => {
 add_victim => 'push',
 all_victims => 'elements',
 count_victims => 'count',
 has_victims => 'count',
 },
);

8th February 2016

Bragging (Before)
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name, ' has killed ',
 scalar @{$self->victims},
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Bragging (Before)
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name, ' has killed ',
 scalar @{$self->victims},
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Bragging (After)
 sub brag {
 my $self = shift;

 if ($self->has_victims) {
 say $self->name . ' has killed ' .
 $self->count_victims,
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', $self->all_victims);
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Bragging (After)
 sub brag {
 my $self = shift;

 if ($self->has_victims) {
 say $self->name . ' has killed ' .
 $self->count_victims,
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', $self->all_victims);
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Killing (Before)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Killing (Before)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Killing (After)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 $self->add_victim($_[0]);
 }
};

8th February 2016

Killing (After)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 $self->add_victim($_[0]);
 }
};

8th February 2016

Your Turn

 You added an aggregate to your class earlier
 Now change it to use traits
 Make the appropriate changes to your code

Meta Programming

8th February 2016

Meta Object Protocol

 Moose is built on Class::MOP
 A Meta Object Protocol
 A set of classes that model a class

framework
 Class introspection

8th February 2016

The Meta Object

 Access the MOP through your class's “meta”
object

 Get it through the meta() method
 Class or object method

 my $meta = Dalek->meta;

8th February 2016

Querying Classes

 Class name
 $meta->name

 say Dalek->new->meta->name;

 Superclasses
 $meta->superclasses
 @super = Dalek->new->meta->superclasses;
say $super[0]->name; # Alien

8th February 2016

Querying Attributes

 Get list of attributes
 Each attribute is an object
 foreach my $attr (
 $meta->get_all_attributes
) {
 say $attr->name;
 say $attr->reader;
 say $attr->writer;
}

8th February 2016

Querying Methods

 Get a list of methods
 Each method is an object
 foreach my $meth (
 $meta->get_all_methods
) {
 say $meth->name;
 say $meth->package_name;
 say $meth->body;
}

8th February 2016

MOP is Read/Write

 The MOP objects aren't read-only
 You can change classes too

 Until you call make_immutable

 That's how Moose defines classes
 See Class::MOP documentation

8th February 2016

Your Turn

 Use the MOP to get information about your
class

 Use the MOP to add an attribute and a
method to your class

 What else can you do with the MOP?

Moose Plugins

8th February 2016

Moose Plugins

 Moose has a number of useful plugins
 Many in the MooseX::* namespace

 Important to pronounce that carefully

 New ones added frequently
 A survey of some of them

8th February 2016

Strict Constructors

 Standard Moose ignores unknown
constructor parameters

 Dalek->new(
 name => 'Karn',
 email => 'karn@skaro.com', # huh?
)

 MooseX::StrictConstructor throws an error

8th February 2016

Parameter Validation

 By default Perl is not strict about parameters
to subroutines

 Params::Validate is a useful CPAN module
 MooseX::Params::Validate is a Moose

wrapper

8th February 2016

Parameter Validation
 package Foo;

use Moose;
use MooseX::Params::Validate;

sub foo {
 my ($self, %params) = validated_hash(
 \@_,
 bar => {
 isa => 'Str', default => 'Moose'
 },
);
 return "Hooray for $params{bar}!";
}

8th February 2016

Singleton Object

 A class that only ever has one instance
 Highlander variable

 “There can be only one”
 MooseX::Singleton
 use MooseX::Singleton;

8th February 2016

Nicer Class Definitions

 In Moose a class is still a package
 In Moose a method is still a subroutine
 Moops adds new keywords
 Make your classes look more like classes
 Make your methods look more like methods

8th February 2016

Nicer Class Definitions
 class User {
 has 'name' => (...);
 has 'email' => (...);

 method login (Str $password) {
 ...
 }
}

 Still considered experimental
 See also MooseX::Method::Signatures

8th February 2016

A Few More

 MooseX::Types
 MooseX::Types::Structures

 Easier subtype definitions
 MooseX::ClassAttributes

8th February 2016

A Few More

 MooseX::Daemonize
 MooseX::FollowPBP
 MooseX::NonMoose

 Moose subclasses of non-Moose classes

8th February 2016

Your Turn

 Add Moops to your class
 Try our some more plugins

Alternatives
to Moose

8th February 2016

Performance

 Moose is relatively heavyweight
 Adds a lot to your application
 no moose and make_immutable both help

 Moose team working on performance
improvements

 Lightweight alternatives

8th February 2016

Moo

 “Minimalist Object Orientation (with Moose
compatibility)”

 Lightweight subset of Moose
 Optimised for rapid start-up
 No meta-object

 Unless Moose is loaded
 Support for roles

8th February 2016

Mo

 Even smaller subset of Moose
 new

 has
 All arguments are ignored

 extends

 Sometimes that is enough

8th February 2016

Mouse & Any::Moose

 Mouse was an earlier light-weight Moose
clone

 Nowhere near as light-weight as Moo
 Cut-down meta object
 Any::Moose switches between Mouse and

Moose
 Moo is usually better

8th February 2016

Your Turn

 Convert your class to Moo

Further Information

8th February 2016

More Moose

 Moose does a lot more
 We have only scratched the surface
 Good documentation

 CPAN

 Moose::Manual::*

 Moose::Cookbook::*

 No good book yet

8th February 2016

Help on Moose

 Moose web site
 http://moose.perl.org/

 Mailing list
 http://lists.perl.org/list/moose.html

 IRC Channel
 #moose on irc.perl.org

That's All Folks

• Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Creating References
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Using References
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Why Use References?
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Why Use Reference?
	Complex Data Structures
	Complex Data Structure
	More Complex Data Structures
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Why Use References
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183

