
Object Oriented
Programming with
Perl and Moose

Dave Cross
dave@mag-sol.com

8th February 2016

Schedule

 09:45 – Begin
 11:15 – Coffee break (15 mins)
 13:00 – Lunch (60 mins)
 14:00 – Begin
 15:30 – Coffee break (15 mins)
 17:00 – End

8th February 2016

What We Will Cover

 Introduction to Object Oriented
programming

 Overview of Moose
 Object Attributes
 Subclasses
 Object construction

8th February 2016

What We Will Cover

 Data types
 Delegation
 Roles
 Meta-programming
 Alternatives to Moose
 Further information

Object Oriented Programming

8th February 2016

What is OOP?

 “Traditional” programming is procedural
 Subroutines work on variables
 my $twelve = regenerate($eleven);

 Variables are dumb
 Just stores for data

8th February 2016

What is OOP?
 Object Oriented programming inverts this
 Variables are objects
 Objects can carry out certain processes

 Called methods
 my $twelve = $eleven->regenerate();

 Objects are intelligent
 Objects know what methods they can carry

out

8th February 2016

Some Concepts
 A Class is a type of intelligent variable

 e.g. Time Lord

 An Object is an instance of a class
 e.g. The Doctor

 A Method is an action that an object does
 e.g. Regenerate

 An Attribute is a piece of data in an object
 e.g. Name

8th February 2016

Some Concepts

 A class contains a number of methods
 An object is of a particular class
 The class defines the behaviour of an object
 An object has many attributes

 Data items

 A class can also have attributes
 Class-wide data items

8th February 2016

Methods

 Methods can be either class methods or
object methods

 Class methods are called on a class
 my $doctor = TimeLord->new;

 Object methods are called on an object
 $doctor->regenerate;

8th February 2016

Constructors

 All classes need a constructor method
 Creates a new object of that class
 Usually a class method
 Often called new
 my $doctor = TimeLord->new;

8th February 2016

Constructors

 A Class might have multiple constructors
 my $doctor = TimeLord->new;

 my $flesh_dr =
 TimeLord->clone($doctor);

 A constructor might be an object method
 my $flesh_dr = $doctor->clone;

8th February 2016

Accessors & Mutators

 Access object attributes with an accessor
method

 say “The time lord's name is “,
 $doctor->get_name;

 Change an attribute with a mutator method
 $doctor->set_age(
 $doctor->get_age + 1
);

8th February 2016

Accessor/Mutators

 Accessors and mutators are often the same
method

 say “The time lord's name is “,
 $doctor->name;

 $doctor->age($doctor->age + 1);

 Checks number of parameters
 Reacts appropriately

8th February 2016

Accessor/Mutators

 Which to choose?
 Perl Best Practices says get_foo/set_foo
 I like one method called foo
 No firm rules
 Pick one
 Stick with it

8th February 2016

Subclasses

 A subclass is a specialisation of a class
 “Alien” is a class
 “Dalek” is one possible subclass
 Avoid reimplementing shared methods

8th February 2016

Subclasses

 Subclasses alter behaviour of their parent
classes

 Add methods
 Override existing methods
 Add attributes
 Override existing attributes

Object Oriented Perl

8th February 2016

OO Perl

 Three rules of OO Perl
 A class is a package
 An object is reference
 A method is a subroutine

8th February 2016

A Class is a Package

 Same as any other package
 Contains subroutines

 Methods

 Contains variables
 Class attributes

8th February 2016

An Object is a Reference

 Usually a reference to a hash
 Hash keys are attribute names
 Hash values are attribute values
 Actually a “blessed” hash

 So it knows what class it is

8th February 2016

A Method is a Subroutine

 Just like any other subroutine
 Some rules on parameters
 First parameter is class name or object

reference
 Some differences in calling
 Arrow notation

 $doctor->name()

8th February 2016

Calling Methods

 Methods are called using arrow notation
 Class methods

 TimeLord->new();

 Object methods
 $doctor->regenerate();

8th February 2016

Calling Methods

 Perl rewrites the method call
 Invocant passed as first argument
 TimeLord->new();

 TimeLord::new('Timelord');

 $doctor->regenerate();

 TimeLord::regenerate($doctor);

8th February 2016

Simple Class

 package Alien; # package

sub new { # subroutine
 my ($class, $name) = @_;

 # hash reference
 my $self = { name => $name };

 return bless $self, $class;
}

8th February 2016

Simple Class

 sub name { # subroutine
 my ($self, $name) = @_;

 if (defined $name) {
 $self->{name} = $name;
 }

 return $self->{name}; # hash ref
}

1;

8th February 2016

Using Our Class

 use Alien;

my $alien = Alien->new('Mork');

say $alien->name; # prints Mork

$alien->name('Mork from Ork');

say $alien->name;
prints Mork from Ork

8th February 2016

Your Turn

 Create a class using the Alien class as a base
 Create a program that uses your class
 Add at least one other method to your class

Moose

8th February 2016

Moose

 Moose is a Modern Object System for Perl 5
 Based on Perl 6 object system
 More powerful
 More flexible
 Easier

8th February 2016

Simple Moose Class

 package Alien;
use Moose;

has name => (
 is => 'rw',
 isa => 'Str',
);

no Moose;
__PACKAGE__->meta->make_immutable;

8th February 2016

What's Going On?

 use Moose;

 Loads Moose environment
 Makes our class a subclass of Moose::Object
 Turns on use strict and use warnings

8th February 2016

Declarative Attributes

 has name => (
 is => 'rw',
 isa => 'Str',
);

 Creates an attribute called 'name'
 Makes it read/write
 Must be a string

8th February 2016

Read/Write Attributes

 Moose creates methods to access/alter
attributes

 $alien->name('Strax');
say $alien->name;

 The 'is' property controls how they work
 'rw' : read and write
 'ro' : read only

8th February 2016

Private Attributes

 Use is => 'bare' for attributes that aren't
readable

 No methods are created
 Direct hash access
 $alien->{name} =
 'Commander Strax';

8th February 2016

Other Methods

 Not all methods are constructors or
accessors/mutators

 Write other methods as usual
 First parameter is object reference

8th February 2016

Other Methods
 package Timelord;

...

sub regenerate {
 my $self = shift;

 my $curr = $self->regeneration;
 $self->regeneration(++$curr);
}

8th February 2016

Housekeeping
 Moose classes carry a lot of baggage
 We can (and should) turn some of it off
 no Moose;

 Remove Moose exports from your namespace

 See also namespace::autoclean
 __PACKAGE__->meta->make_immutable;

 No more changes to class definition

 Performance improvements

8th February 2016

Using Our Class

 From the user's perspective, nothing changes
 Use it just like other Perl classes
 use Alien;

my $strax = Alien->new(
 name => 'Strax'
);
say $strax->name;

 Named parameters are good

8th February 2016

Your Turn

 Create new directory and copy the Alien test
program into it

 Create a new Moose-based Alien.pm
 Does the test program work?
 What do you need to change?
 Add at least one other method

Subclasses

8th February 2016

Subclassing

 A subclass is a specialisation of a superclass
 More specific behaviour
 New attributes
 New methods
 Overriding superclass methods and

attributes

8th February 2016

Subclassing

 Not all aliens are the same
 package Dalek;
use Moose;
extends 'Alien';

has accuracy => (
 isa => 'Num',
 is => 'rw',
);

8th February 2016

Subclassing
 sub exterminate {
 my $self = shift;

 say “EX-TERM-IN-ATE”;
 if (rand < $self->accuracy) {
 say “$_[0] has been exterminated”;
 return 1;
 } else {
 return;
 }
}

8th February 2016

Using Subclasses
 use Dalek;

my $karn = Dalek->new(
 name => 'Karn', accuracy => 0.9,
);

say $karn->name;
$karn->exterminate('The Doctor');

8th February 2016

Your Turn

 Create a subclass of your class
 Add a new attribute
 Add a new method which uses the new

attribute

8th February 2016

Overriding Methods

 Daleks have a different way of using names
 A Dalek's name is always “Dalek

Something”
 Need to override the name method from

Alien
 But we still want to get the name itself from

Alien's method

8th February 2016

Method Modifiers

 Moose has a declarative way to modify
methods from your superclass

 before : run this code before the superclass
method

 after : run this code after the superclass
method

 around : run this code around the superclass
method

8th February 2016

Before and After

 Methods defined with 'before' and 'after' are
called before or after the parent's method

 before name => sub {
 say 'About to call name()';
};

 Doesn't interact with parent's method

8th February 2016

Around

 Methods defined with 'around' are called
instead of parent's method

 It's your responsibility to call parent's
method

 Slightly different parameters
 Original method name
 Object reference
 Any other parameters

8th February 2016

Dalek Names

 around name => sub {
 my $orig = shift;
 my $self = shift;

 return 'Dalek ' .
 $self->$orig(@_);
};

8th February 2016

Overriding Methods

 Simpler way to override parent methods
 override name => sub {
 my $self = shift;

 return 'Dalek ' . super();
};

 Use the super keyword to call parent
method

 Passes on @_

8th February 2016

Your Turn

 Add a method which overrides a method in
the superclass

 Try both “around” and “override”

Attributes

8th February 2016

Declarative Attributes

 Attributes are declared in a class using the
has keyword

 This is different to “classic” Perl OO
 Where attributes are created by the presence of

accessor methods

 Attributes have a number of properties
 Properties define the attribute

8th February 2016

Properties
 has name => (
 isa => 'Str',
 is => 'rw',
);

 'isa' and 'is' are properties
 Many other options exist

8th February 2016

is
 is : defines whether you can read or write

the attribute
 Actually defines whether accessor method is

created
 And how it works

 $obj->ro_attr('Some value');

 “Cannot assign a value to a read-only
accessor”

8th February 2016

Private Attributes

 Use is => 'bare' for private attributes
 No accessor created

 Still get access through the object hash
 has private => (
 is => 'bare'
);

 $self->private; # Error

 $self->{private};

8th February 2016

Accessor Name

 “is” is actually a shortcut for two other
properties

 reader and writer
 has name => (
 reader => 'get_name',
 writer => 'set_name',
);

8th February 2016

Accessor Name

 Now we don't have a method called name
 say $obj->name; # Error

 Need to use get_name
 say $obj->get_name;

 And set_name
 $obj->set_name('New Name');

8th February 2016

Best Practices

 What is best practice
 One method (name)

 Two methods (get_name, set_name)

 Who cares?
 Choose one

 And stick with it

 Perl Best Practices says two methods
 See MooseX::FollowPBP

8th February 2016

Required Attributes

 By default Moose attributes are optional
 Make them mandatory with required
 has name => (
 required => 1,
);

 my $alien = Alien->new;

 “Attribute (name) is required at constructor
Alien::new”

8th February 2016

Attribute Defaults
 Set a default for missing attributes
 has accuracy => (
 default => 0.5,
);

 Or a subroutine reference
 has accuracy => (
 default => sub { rand },
);

8th February 2016

Attribute Builder
 Define a builder method instead of a default

subroutine
 has accuracy => (
 builder => '_build_accuracy',
);

 sub _build_accuracy {
 return rand;
}

 Easier to subclass

8th February 2016

Predicate
 Define a method to check if an attribute has

been set
 Check for defined value

 has name => (
 isa => 'Str',
 predicate => 'has_name',
);

 No default

8th February 2016

Using Predicate

 Use predicate method to check if an attribute
is set

 if ($random_alien->has_name) {
 say $random_alien->name;
} else {
 say 'Anonymous Alien';
}

8th February 2016

Clearer
 Define a method to clear an attribute

 Sets to undef
 has name => (
 is => 'Str',
 clearer => 'clear_name',
);

 No default

8th February 2016

Using Clearer

 Use clearer method to clear an attribute
 if ($anon_alien->has_name) {
 $anon_alien->clear_name;
}

8th February 2016

Attribute Types

 Set the type of an attribute with isa
 has accuracy => (
 isa => 'Num',
);

 Validation checks run as value is set
 We'll see more about types later

8th February 2016

Aggregate Attributes

 You can define aggregate attributes
 isa => 'ArrayRef'

 Reference to array (elements are any type)
 isa => 'ArrayRef[Int]'

 Reference to array (elements are integers)

8th February 2016

Array Example
 Daleks like to keep track of their victims
 has victims (
 is => 'rw',
 isa => 'ArrayRef[Str]',
 default => sub { [] },
);

 And in the exterminate() method
 push $self->victims, $_[0];

8th February 2016

Array Example
 sub brag {

 my $self = shift;

 if (@{$self->victims}) {
 say $self->name, ' has killed ',
 scalar @{$self->victims},
 ' enemies of the Daleks';
 say 'Their names are: ',
 join(', ',
 @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Hash Attributes
 Moose also supports hash ref attributes
 has some_attribute => (
 isa => 'HashRef[Str]',
 is => 'rw',
);

8th February 2016

Easier Aggregates
 Attribute traits can make it easier to use

aggregate attributes
 We will revisit this later

8th February 2016

Lazy Attributes
 Some attributes are rarely used
 And can be complex to construct
 It's a waste of resources to build them before

they are needed
 Mark them as lazy
 And define a build method

8th February 2016

Lazy Attributes
 has useragent => (
 is => 'LWP::UserAgent',
 lazy => 1,
 builder => '_build_ua',
);

 sub _build_ua {
 return LWP::UserAgent->new(...);
}

 $self->useragent->get(...);
creates object

8th February 2016

Triggers
 A trigger is a subroutine that is called when

an attribute's value changes
 Subroutine is passed the old and new values
 has name => (
 trigger => \&name_change,
);

 sub name_change {
 my ($self, $new, $old) = @_;
 warn
 “Name changed from $old to $new”;
}

8th February 2016

Your Turn

 Add more attributes to your class
 Experiment with various properties

 required

 isa

 default

 Add an array or hash attribute

8th February 2016

Overriding Attributes
 Subclasses can override attribute properties
 Use '+' on the subclass attribute definition
 has '+name' => (
 ...
);

 Various properties can be changed
 default, coerce, required, documentation, lazy,

isa, handles, builder, metaclass, traits

8th February 2016

Sontaran Names
 Many aliens don't have names
 The 'name' attribute in Alien.pm doesn't have

the 'required' property
 Sontarans do use names
 package Sontaran;
has '+name' => (
 required => 1,
);

8th February 2016

More Types
 Attributes can also be objects
 has useragent => (
 is => 'rw',
 isa => 'LWP::UserAgent',
);

 Or a union of types
 has output => (
 is 'rw',
 isa => 'Object | Filehandle',
);

8th February 2016

Attribute Delegation

 Pass method calls to attributes
 Assumes the attributes are objects

 Defined using the 'handles' property
 Defined with an array or hash reference

8th February 2016

Delegation with Array

 Array contains list of method names
 Named methods are passed through to

attribute object
 has useragent => (
 is => 'rw',
 isa => 'LWP::UserAgent',
 handles => [qw(get post)],
);

8th February 2016

Delegation with Array

 $obj->get($url)

 Is now equivalent to
 $obj->useragent->get($url)

8th February 2016

Delegation with Hash

 Allows renaming of methods
 Hash contains key/values pairs of method

names
 Key is our object's method name
 Value is the method name in the attribute

object

8th February 2016

Delegation with Hash

 has useragent => (
 is => 'rw',
 isa => 'LWP::UserAgent',
 handles => {
 get_data => 'get',
 post_data => 'post',
 },
);

8th February 2016

Delegation with Hash

 $obj->get_data($url)

 Is now equivalent to
 $obj->useragent->get($url)

8th February 2016

Your Turn

 Override an attribute's properties in your
sub-class

 Add an attribute that is an object
 Delegate some methods to the attribute

object

Constructors

8th February 2016

Constructors

 A constructor is a special type of method
 It is usually a class method
 It returns a new object
 Moose classes prefer named parameters
 my $karn = Dalek->new(
 name => 'Karn', accuracy => 0.99,
);

8th February 2016

Default Constructor

 The default Moose constructor builds an
object from its parameters

 Checks for mandatory attributes
 Checks type constraints
 Returns an object

8th February 2016

Different Behaviour
 Some constructors need to do other

processing
 Not just build an object
 Sometimes it's convenient not to use named

parameters
 Use BUILD and BUILDARGS to override

Moose's default behaviour

8th February 2016

BUILDARGS
 More flexible parameters
 Take a parameter list convert it to named

parameters
 Commonly Daleks only need a name
 my $karn = Dalek->new(
 name => 'Karn'
);

 Why not simplify?
 my $karn = Dalek->new('Karn');

8th February 2016

Dalek Construction
 We can use BUILDARGS to build a list of

named parameters
 around BUILDARGS => sub {
 my $orig = shift;
 my $class = shift;

 if (@_ == 1 and !ref $_[0]) {
 return
 $class->$orig(name => $_[0]);
 } else {
 return $class->$orig(@_);
 }
}

8th February 2016

Default BUILDARGS
 We use 'around' to override BUILDARGS
 Allows superclass BUILDARGS to be

called
 Moose has a default (top level)

BUILDARGS
 Converts named params to a hash ref

 Alien->new(name => 'Mork')
 Alien->new({name => 'Mork'})

8th February 2016

Announcing Your Dalek

 When a new Dalek is created we want to
announce its name

 We can use the BUILD method
 After a new object is constructed, the

BUILD method is called
 Use it to carry out any additional processing

8th February 2016

BUILD Example

 sub BUILD {
 my $self = shift;

 say $self->name . ' is born.';
}

 This method is called every time a new
Dalek object is created

 Called after the object is constructed
 But before the new method returns

8th February 2016

Constructor Sequence

 BUILDARGS called
 Object constructed
 BUILD called

8th February 2016

Your Turn

 Add a BUILDARGS method that simplifies
the most common use of your constructor

 Add a BUILD method

Data Types

8th February 2016

Moose Data Types

 Moose types are arranged in a hierarchy
 Like class inheritance

 Easy to add our own types
 Easy to convert between types

8th February 2016

Type Hierarchy (Top)

 Any
 Item

 Bool
 Maybe[`a]
 Undef
 Defined

 Value
 Ref

8th February 2016

Type Hierarchy (Value)

 Value
 Str

 Num
 Int

 ClassName
 RoleName

8th February 2016

Type Hierarchy (Ref)

 Ref
 ScalarRef[`a]
 ArrayRef[`a]
 HashRef[`a]
 CodeRef
 RegexpRef
 GlobRef

 FileHandle
 Object

8th February 2016

Parameterised Types

 [`a] marks a parameter
 Maybe[Str]
 ScalarRef[Num]
 ArrayRef[Int]

 Array elements are integers

 HashRef[Filehandle]
 Hash values are filehandles

8th February 2016

Defining Types

 You can define your own data types
 Add constraints to existing types

8th February 2016

Defining Types

 Remember that Daleks have an accuracy
 Accuracy should be less than 1

 To give the Doctor a chance

 Define your own type
 subtype 'Accuracy'
 => as 'Num'
 => where { $_ < 1 };

8th February 2016

Using Types

 has accuracy => (
 isa => 'Accuracy',
);

 my $dalek = Dalek->new(
 accuracy => 1
);

 “Attribute (accuracy) does not pass the type
constraint because: Validation failed for
'Accuracy' with value 1 at constructor
Dalek::new”

8th February 2016

Type Definition Tips

 Name types within a project-specific
namespace
 MagSol::DrWho::Accuracy

 See Moose::Types for utilities to make type
definition easier

8th February 2016

Type Coercion

 Convert between types
 Automatically

8th February 2016

Dalek Birthdays

 Daleks like to keep track of their creation
date

 They store it in a DateTime object
 has creation (
 is => 'ro',
 isa => 'DateTime',
);

8th February 2016

Dalek Birthdays

 It's hard to create a Dalek with a creation
date

 Dalek->new(
 name => "Karn",
 creation => "2013-04-06"
)

 “2013-04-06” is not a DateTime object

8th February 2016

Dalek Birthdays

 Coerce a string into a DateTime
 coerce 'DateTime'
 => from 'Str'
 => via {
 DateTime::Format::Strptime->new(
 pattern => '%Y-%m-%d'
)->parse_datetime($_)
};

 This doesn't work either

8th February 2016

Dalek Birthdays

 Can't coerce into a standard type
 Need to create a subtype
 That's just how Moose works

8th February 2016

Dalek Birthdays
 subtype 'Creation'
 as => 'DateTime';

coerce 'Creation'
 => from 'Str'
 => via {
 DateTime::Format::Strptime->new(
 pattern => '%Y-%m-%d'
)->parse_datetime($_)
};

8th February 2016

Dalek Birthdays

 has creation => (
 isa => 'Creation',
 is => 'ro',
 coerce => 1,
};

 Dalek->new(
 name => "Karn",
 creation => "2013-04-06"
);

8th February 2016

Your Turn

 Add one of your own types to your class
 Add a type coercion to your class

Roles

8th February 2016

Inheritance

 Inheritance is a useful feature of OO
 Easy to create specialised subclasses
 Easy to construct complex hierarchies of

classes
 Not so easy to maintain

8th February 2016

Multiple Inheritance

 It's possible for one class to inherit from
many superclasses

 This can lead to “diamond inheritance”
 Class D subclasses classes B and C

 Classes B and C both subclass class A

 What happens?

 Complexity and confusion

8th February 2016

Roles

 Roles address this issue
 Cut-down classes that can be added into a

class
 Roles cannot be instantiated
 A class “does” a role
 Like interfaces or mixins

8th February 2016

Roles

 Roles change the classes they are used by
 Add methods
 Add attributes
 Enforce method definition

8th February 2016

Killer Aliens

 Not all aliens are killers
 Need a role for those who are
 Force classes to implement a kill() method

8th February 2016

Killer Aliens

 package Alien::Role::Killer;

use Moose::Role;

requires 'kill';

 package Dalek;

with 'Alien::Role::Killer';

8th February 2016

Killer Aliens

 Now we can't use the Dalek class until we
have defined a kill() method

 perl -MDalek -E'Dalek->new(“Karn”)

 'Alien::Killer' requires the method 'kill' to be
implemented by 'Dalek'

8th February 2016

Killer Daleks

 Let's cheat slightly
 Rename exterminate() to kill()
 Now we can use the Dalek class again

8th February 2016

Counting Victims

 Remember how Daleks keep track of their
victims?

 That behaviour really belongs in the
Alien::Role::Killer role

 All killer aliens keep track of their victims
 They just kill in different ways

8th February 2016

Counting Victims

 The class shouldn't know about the role's
attributes

 Remember this line from exterminate()
 push $self->victims, $_

 How do we deal with that?
 Use method modifiers

8th February 2016

Counting Victims

 In Alien::Role::Killer
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Bragging About Victims

 We also had a brag() method
 Used the victims array
 Move that into Alien::Role::Killer too

8th February 2016

Alien::Killer
 package Alien::Role::Killer;

use 5.010;
use Moose::Role;

requires 'kill';

has victims => (
 isa => 'ArrayRef[Str]',
 is => 'rw',
 default => sub { [] },
);

8th February 2016

Alien::Killer
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Alien::Killer
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name . ' has killed ' .
 scalar @{$self->victims} .
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Alien::Killer
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name . ' has killed ' .
 scalar @{$self->victims} .
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Dalek

 package Dalek;

use Moose;

extends 'Alien';
with 'Alien::Role::Killer';

...

8th February 2016

Killing People
 #!/usr/bin/perl

use strict;
use warnings;

use Dalek;

my $d = Dalek->new("Karn");

foreach (1 .. 10) {
 $d->kill("Timelord $_");
}
$d->brag;

8th February 2016

Killing People
 $./killing.pl

Dalek Karn is born.
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 2 has been exterminated
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 5 has been exterminated
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 9 has been exterminated
EX-TERM-IN-ATE
Timelord 10 has been exterminated
Dalek Karn has killed 4 enemies of the Daleks
Their names are: Timelord 2, Timelord 5, Timelord 9, Timelord 10

8th February 2016

Your Turn

 Write a role for your class
 Use the role from within your class
 Ensure your test programs all still work

8th February 2016

Nicer Aggregate Attrs

 We've seen aggregate attributes
 Array or hash

 victims is an example

 We have to know that these are references
 if (@{$self->victims})

 join ', ', @{self->victims}

 push $self->victims, $victim # Perl 5.14

 Can we make this easier?

8th February 2016

Nicer Aggregate Attrs

 We can add traits to aggregate attribute
definitions

 Add simple methods to manipulate
aggregate attributes

 Hiding complexity

8th February 2016

New Properties

 traits : Reference to a list of traits to add

 Trait must match attribute type
 ArrayRef / Array
 HashRef / Hash
 Etc.

 handles : Maps new class methods onto trait
methods

8th February 2016

Documentation

 Moose::Meta::Trait::Native

 List of types
 High level examples

 Moose::Meta::Attribute::Native::Trait::*

 Full documentation of trait methods

8th February 2016

Types

 Array
 Bool
 Code
 Counter
 Hash
 Number
 String

8th February 2016

Easier Victim Tracking
 has victims => (
 isa => 'ArrayRef[Str]',
 is => 'rw',
 default => sub { [] },
 traits => ['Array'],
 handles => {
 add_victim => 'push',
 all_victims => 'elements',
 count_victims => 'count',
 has_victims => 'count',
 },
);

8th February 2016

Easier Victim Tracking
 has victims => (
 isa => 'ArrayRef[Str]',
 is => 'rw',
 default => sub { [] },
 traits => ['Array'],
 handles => {
 add_victim => 'push',
 all_victims => 'elements',
 count_victims => 'count',
 has_victims => 'count',
 },
);

8th February 2016

Bragging (Before)
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name, ' has killed ',
 scalar @{$self->victims},
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Bragging (Before)
 sub brag {
 my $self = shift;

 if (@{$self->victims}) {
 say $self->name, ' has killed ',
 scalar @{$self->victims},
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', @{$self->victims});
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Bragging (After)
 sub brag {
 my $self = shift;

 if ($self->has_victims) {
 say $self->name . ' has killed ' .
 $self->count_victims,
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', $self->all_victims);
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Bragging (After)
 sub brag {
 my $self = shift;

 if ($self->has_victims) {
 say $self->name . ' has killed ' .
 $self->count_victims,
 ' enemies of the '.ref($self).'s';
 say 'Their names are: ',
 join(', ', $self->all_victims);
 } else {
 say $self->name,
 ' has nothing to brag about';
 }
}

8th February 2016

Killing (Before)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Killing (Before)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 push $self->victims, $_[0];
 }
};

8th February 2016

Killing (After)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 $self->add_victim($_[0]);
 }
};

8th February 2016

Killing (After)
 around kill => sub {
 my $orig = shift;
 my $self = shift;

 if ($self->$orig(@_)) {
 $self->add_victim($_[0]);
 }
};

8th February 2016

Your Turn

 You added an aggregate to your class earlier
 Now change it to use traits
 Make the appropriate changes to your code

Meta Programming

8th February 2016

Meta Object Protocol

 Moose is built on Class::MOP
 A Meta Object Protocol
 A set of classes that model a class

framework
 Class introspection

8th February 2016

The Meta Object

 Access the MOP through your class's “meta”
object

 Get it through the meta() method
 Class or object method

 my $meta = Dalek->meta;

8th February 2016

Querying Classes

 Class name
 $meta->name

 say Dalek->new->meta->name;

 Superclasses
 $meta->superclasses
 @super = Dalek->new->meta->superclasses;
say $super[0]->name; # Alien

8th February 2016

Querying Attributes

 Get list of attributes
 Each attribute is an object
 foreach my $attr (
 $meta->get_all_attributes
) {
 say $attr->name;
 say $attr->reader;
 say $attr->writer;
}

8th February 2016

Querying Methods

 Get a list of methods
 Each method is an object
 foreach my $meth (
 $meta->get_all_methods
) {
 say $meth->name;
 say $meth->package_name;
 say $meth->body;
}

8th February 2016

MOP is Read/Write

 The MOP objects aren't read-only
 You can change classes too

 Until you call make_immutable

 That's how Moose defines classes
 See Class::MOP documentation

8th February 2016

Your Turn

 Use the MOP to get information about your
class

 Use the MOP to add an attribute and a
method to your class

 What else can you do with the MOP?

Moose Plugins

8th February 2016

Moose Plugins

 Moose has a number of useful plugins
 Many in the MooseX::* namespace

 Important to pronounce that carefully

 New ones added frequently
 A survey of some of them

8th February 2016

Strict Constructors

 Standard Moose ignores unknown
constructor parameters

 Dalek->new(
 name => 'Karn',
 email => 'karn@skaro.com', # huh?
)

 MooseX::StrictConstructor throws an error

8th February 2016

Parameter Validation

 By default Perl is not strict about parameters
to subroutines

 Params::Validate is a useful CPAN module
 MooseX::Params::Validate is a Moose

wrapper

8th February 2016

Parameter Validation
 package Foo;

use Moose;
use MooseX::Params::Validate;

sub foo {
 my ($self, %params) = validated_hash(
 \@_,
 bar => {
 isa => 'Str', default => 'Moose'
 },
);
 return "Hooray for $params{bar}!";
}

8th February 2016

Singleton Object

 A class that only ever has one instance
 Highlander variable

 “There can be only one”
 MooseX::Singleton
 use MooseX::Singleton;

8th February 2016

Nicer Class Definitions

 In Moose a class is still a package
 In Moose a method is still a subroutine
 Moops adds new keywords
 Make your classes look more like classes
 Make your methods look more like methods

8th February 2016

Nicer Class Definitions
 class User {
 has 'name' => (...);
 has 'email' => (...);

 method login (Str $password) {
 ...
 }
}

 Still considered experimental
 See also MooseX::Method::Signatures

8th February 2016

A Few More

 MooseX::Types
 MooseX::Types::Structures

 Easier subtype definitions
 MooseX::ClassAttributes

8th February 2016

A Few More

 MooseX::Daemonize
 MooseX::FollowPBP
 MooseX::NonMoose

 Moose subclasses of non-Moose classes

8th February 2016

Your Turn

 Add Moops to your class
 Try our some more plugins

Alternatives
to Moose

8th February 2016

Performance

 Moose is relatively heavyweight
 Adds a lot to your application
 no moose and make_immutable both help

 Moose team working on performance
improvements

 Lightweight alternatives

8th February 2016

Moo

 “Minimalist Object Orientation (with Moose
compatibility)”

 Lightweight subset of Moose
 Optimised for rapid start-up
 No meta-object

 Unless Moose is loaded
 Support for roles

8th February 2016

Mo

 Even smaller subset of Moose
 new

 has
 All arguments are ignored

 extends

 Sometimes that is enough

8th February 2016

Mouse & Any::Moose

 Mouse was an earlier light-weight Moose
clone

 Nowhere near as light-weight as Moo
 Cut-down meta object
 Any::Moose switches between Mouse and

Moose
 Moo is usually better

8th February 2016

Your Turn

 Convert your class to Moo

Further Information

8th February 2016

More Moose

 Moose does a lot more
 We have only scratched the surface
 Good documentation

 CPAN

 Moose::Manual::*

 Moose::Cookbook::*

 No good book yet

8th February 2016

Help on Moose

 Moose web site
 http://moose.perl.org/

 Mailing list
 http://lists.perl.org/list/moose.html

 IRC Channel
 #moose on irc.perl.org

That's All Folks

• Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Creating References
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Using References
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Why Use References?
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Why Use Reference?
	Complex Data Structures
	Complex Data Structure
	More Complex Data Structures
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Why Use References
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183

