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Schedule

 09:45 – Begin
 11:15 – Coffee break (15 mins)
 13:00 – Lunch (60 mins)
 14:00 – Begin
 15:30 – Coffee break (15 mins)
 17:00 – End
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What We Will Cover

 Introduction to Object Oriented 
programming

 Overview of Moose
 Object Attributes
 Subclasses
 Object construction
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What We Will Cover

 Data types
 Delegation
 Roles
 Meta-programming
 Alternatives to Moose
 Further information



Object Oriented Programming
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What is OOP?

 “Traditional” programming is procedural
 Subroutines work on variables
 my $twelve = regenerate($eleven);

 Variables are dumb
 Just stores for data
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What is OOP?
 Object Oriented programming inverts this
 Variables are objects
 Objects can carry out certain processes

 Called methods
 my $twelve = $eleven->regenerate();

 Objects are intelligent
 Objects know what methods they can carry 

out
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Some Concepts
 A Class is a type of intelligent variable

 e.g. Time Lord

 An Object is an instance of a class
 e.g. The Doctor

 A Method is an action that an object does
 e.g. Regenerate

 An Attribute is a piece of data in an object
 e.g. Name
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Some Concepts

 A class contains a number of methods
 An object is of a particular class
 The class defines the behaviour of an object
 An object has many attributes

 Data items

 A class can also have attributes
 Class-wide data items
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Methods

 Methods can be either class methods or 
object methods

 Class methods are called on a class
 my $doctor = TimeLord->new;

 Object methods are called on an object
 $doctor->regenerate;
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Constructors

 All classes need a constructor method
 Creates a new object of that class
 Usually a class method
 Often called new
 my $doctor = TimeLord->new;
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Constructors

 A Class might have multiple constructors
 my $doctor = TimeLord->new;

 my $flesh_dr =
  TimeLord->clone($doctor);

 A constructor might be an object method
 my $flesh_dr = $doctor->clone;
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Accessors & Mutators

 Access object attributes with an accessor 
method

 say “The time lord's name is “,
    $doctor->get_name;

 Change an attribute with a mutator method
 $doctor->set_age(
  $doctor->get_age + 1
);
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Accessor/Mutators

 Accessors and mutators are often the same 
method

 say “The time lord's name is “,
    $doctor->name;

 $doctor->age($doctor->age + 1);

 Checks number of parameters
 Reacts appropriately
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Accessor/Mutators

 Which to choose?
 Perl Best Practices says get_foo/set_foo
 I like one method called foo
 No firm rules
 Pick one
 Stick with it
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Subclasses

 A subclass is a specialisation of a class
 “Alien” is a class
 “Dalek” is one possible subclass
 Avoid reimplementing shared methods
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Subclasses

 Subclasses alter behaviour of their parent 
classes

 Add methods
 Override existing methods
 Add attributes
 Override existing attributes



Object Oriented Perl
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OO Perl

 Three rules of OO Perl
 A class is a package
 An object is reference
 A method is a subroutine
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A Class is a Package

 Same as any other package
 Contains subroutines

 Methods

 Contains variables
 Class attributes
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An Object is a Reference

 Usually a reference to a hash
 Hash keys are attribute names
 Hash values are attribute values
 Actually a “blessed” hash

 So it knows what class it is
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A Method is a Subroutine

 Just like any other subroutine
 Some rules on parameters
 First parameter is class name or object 

reference
 Some differences in calling
 Arrow notation

 $doctor->name()
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Calling Methods

 Methods are called using arrow notation
 Class methods

 TimeLord->new();

 Object methods
 $doctor->regenerate();
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Calling Methods

 Perl rewrites the method call
 Invocant passed as first argument
 TimeLord->new();

 TimeLord::new('Timelord');

 $doctor->regenerate();

 TimeLord::regenerate($doctor);
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Simple Class

 package Alien; # package

sub new { # subroutine
  my ($class, $name) = @_;

  # hash reference
  my $self = { name => $name };

  return bless $self, $class;
}
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Simple Class

 sub name { # subroutine
  my ($self, $name) = @_;

  if (defined $name) {
    $self->{name} = $name;
  }

  return $self->{name}; # hash ref
}

1;
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Using Our Class

 use Alien;

my $alien = Alien->new('Mork');

say $alien->name; # prints Mork

$alien->name('Mork from Ork');

say $alien->name;
# prints Mork from Ork
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Your Turn

 Create a class using the Alien class as a base
 Create a program that uses your class
 Add at least one other method to your class



Moose
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Moose

 Moose is a Modern Object System for Perl 5
 Based on Perl 6 object system
 More powerful
 More flexible
 Easier
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Simple Moose Class

 package Alien;
use Moose;

has name => (
  is => 'rw',
  isa => 'Str',
);

no Moose;
__PACKAGE__->meta->make_immutable;
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What's Going On?

 use Moose;

 Loads Moose environment
 Makes our class a subclass of Moose::Object
 Turns on use strict and use warnings
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Declarative Attributes

 has name => (
  is => 'rw',
  isa => 'Str',
);

 Creates an attribute called 'name'
 Makes it read/write
 Must be a string
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Read/Write Attributes

 Moose creates methods to access/alter 
attributes

 $alien->name('Strax');
say $alien->name;

 The 'is' property controls how they work
 'rw' : read and write
 'ro' : read only
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Private Attributes

 Use is => 'bare' for attributes that aren't 
readable

 No methods are created
 Direct hash access
 $alien->{name} =
  'Commander Strax';
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Other Methods

 Not all methods are constructors or 
accessors/mutators

 Write other methods as usual
 First parameter is object reference
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Other Methods
 package Timelord;

...

sub regenerate {
  my $self = shift;

  my $curr = $self->regeneration;
  $self->regeneration(++$curr);
}
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Housekeeping
 Moose classes carry a lot of baggage
 We can (and should) turn some of it off
 no Moose;

 Remove Moose exports from your namespace

 See also namespace::autoclean
 __PACKAGE__->meta->make_immutable;

 No more changes to class definition

 Performance improvements
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Using Our Class

 From the user's perspective, nothing changes
 Use it just like other Perl classes
 use Alien;

my $strax = Alien->new(
  name => 'Strax'
);
say $strax->name;

 Named parameters are good
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Your Turn

 Create new directory and copy the Alien test 
program into it

 Create a new Moose-based Alien.pm
 Does the test program work?
 What do you need to change?
 Add at least one other method



Subclasses
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Subclassing

 A subclass is a specialisation of a superclass
 More specific behaviour
 New attributes
 New methods
 Overriding superclass methods and 

attributes
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Subclassing

 Not all aliens are the same
 package Dalek;
use Moose;
extends 'Alien';

has accuracy => (
  isa => 'Num',
  is => 'rw',
);
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Subclassing
 sub exterminate {
  my $self = shift;

  say “EX-TERM-IN-ATE”;
  if (rand < $self->accuracy) {
    say “$_[0] has been exterminated”;
    return 1;
  } else {
    return;
  }
}
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Using Subclasses
 use Dalek;

my $karn = Dalek->new(
  name => 'Karn', accuracy => 0.9,
);

say $karn->name;
$karn->exterminate('The Doctor');
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Your Turn

 Create a subclass of your class
 Add a new attribute
 Add a new method which uses the new 

attribute
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Overriding Methods

 Daleks have a different way of using names
 A Dalek's name is always “Dalek 

Something”
 Need to override the name method from 

Alien
 But we still want to get the name itself from 

Alien's method
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Method Modifiers

 Moose has a declarative way to modify 
methods from your superclass

 before : run this code before the superclass 
method

 after : run this code after the superclass 
method

 around : run this code around the superclass 
method
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Before and After

 Methods defined with 'before' and 'after' are 
called before or after the parent's method

 before name => sub {
  say 'About to call name()';
};

 Doesn't interact with parent's method
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Around

 Methods defined with 'around' are called 
instead of parent's method

 It's your responsibility to call parent's 
method

 Slightly different parameters
 Original method name
 Object reference
 Any other parameters
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Dalek Names

 around name => sub {
  my $orig = shift;
  my $self = shift;

  return 'Dalek ' .
    $self->$orig(@_);
};
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Overriding Methods

 Simpler way to override parent methods
 override name => sub {
  my $self = shift;

  return 'Dalek ' . super();
};

 Use the super keyword to call parent 
method

 Passes on @_
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Your Turn

 Add a method which overrides a method in 
the superclass

 Try both “around” and “override”



Attributes
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Declarative Attributes

 Attributes are declared in a class using the 
has keyword

 This is different to “classic” Perl OO
 Where attributes are created by the presence of 

accessor methods

 Attributes have a number of properties
 Properties define the attribute
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Properties
 has name => (
  isa => 'Str',
  is => 'rw',
);

 'isa' and 'is' are properties
 Many other options exist
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is
 is : defines whether you can read or write 

the attribute
 Actually defines whether accessor method is 

created
 And how it works

 $obj->ro_attr('Some value');

 “Cannot assign a value to a read-only 
accessor”
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Private Attributes

 Use is => 'bare' for private attributes
 No accessor created

 Still get access through the object hash
 has private => (
  is => 'bare'
);

 $self->private; # Error

 $self->{private};
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Accessor Name

 “is” is actually a shortcut for two other 
properties

 reader and writer
 has name => (
  reader => 'get_name',
  writer => 'set_name',
);
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Accessor Name

 Now we don't have a method called name
 say $obj->name; # Error

 Need to use get_name
 say $obj->get_name;

 And set_name
 $obj->set_name('New Name');
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Best Practices

 What is best practice
 One method (name)

 Two methods (get_name, set_name)

 Who cares?
 Choose one

 And stick with it

 Perl Best Practices says two methods
 See MooseX::FollowPBP
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Required Attributes

 By default Moose attributes are optional
 Make them mandatory with required
 has name => (
  required => 1,
);

 my $alien = Alien->new;

 “Attribute (name) is required at constructor 
Alien::new”
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Attribute Defaults
 Set a default for missing attributes
 has accuracy => (
  default => 0.5,
);

 Or a subroutine reference
 has accuracy => (
  default => sub { rand },
);



8th February 2016

Attribute Builder
 Define a builder method instead of a default 

subroutine
 has accuracy => (
  builder => '_build_accuracy',
);

 sub _build_accuracy {
  return rand;
}

 Easier to subclass
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Predicate
 Define a method to check if an attribute has 

been set
 Check for defined value

 has name => (
  isa => 'Str',
  predicate => 'has_name',
);

 No default
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Using Predicate

 Use predicate method to check if an attribute 
is set

 if ($random_alien->has_name) {
  say $random_alien->name;
} else {
  say 'Anonymous Alien';
}
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Clearer
 Define a method to clear an attribute

 Sets to undef
 has name => (
  is => 'Str',
  clearer => 'clear_name',
);

 No default
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Using Clearer

 Use clearer method to clear an attribute
 if ($anon_alien->has_name) {
  $anon_alien->clear_name;
}
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Attribute Types

 Set the type of an attribute with isa
 has accuracy => (
  isa => 'Num',
);

 Validation checks run as value is set
 We'll see more about types later
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Aggregate Attributes

 You can define aggregate attributes
 isa => 'ArrayRef'

 Reference to array (elements are any type)
 isa => 'ArrayRef[Int]'

 Reference to array (elements are integers)
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Array Example
 Daleks like to keep track of their victims
 has victims (
  is => 'rw',
  isa => 'ArrayRef[Str]',
  default => sub { [] },
);

 And in the exterminate() method
 push $self->victims, $_[0];
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Array Example
 sub brag {

  my $self = shift;

  if (@{$self->victims}) {
    say $self->name, ' has killed ',
        scalar @{$self->victims},
        ' enemies of the Daleks';
    say 'Their names are: ',
        join(', ',
             @{$self->victims});
  } else {
    say $self->name,
      ' has nothing to brag about';
  }
}
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Hash Attributes
 Moose also supports hash ref attributes
 has some_attribute => (
  isa => 'HashRef[Str]',
  is => 'rw',
);
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Easier Aggregates
 Attribute traits can make it easier to use 

aggregate attributes
 We will revisit this later
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Lazy Attributes
 Some attributes are rarely used
 And can be complex to construct
 It's a waste of resources to build them before 

they are needed
 Mark them as lazy
 And define a build method
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Lazy Attributes
 has useragent => (
  is => 'LWP::UserAgent',
  lazy => 1,
  builder => '_build_ua',
);

 sub _build_ua {
  return LWP::UserAgent->new(...);
}

 $self->useragent->get(...);
# creates object
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Triggers
 A trigger is a subroutine that is called when 

an attribute's value changes
 Subroutine is passed the old and new values
 has name => (
  trigger => \&name_change,
);

 sub name_change {
  my ($self, $new, $old) = @_;
  warn
    “Name changed from $old to $new”;
}
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Your Turn

 Add more attributes to your class
 Experiment with various properties

 required

 isa

 default

 Add an array or hash attribute
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Overriding Attributes
 Subclasses can override attribute properties
 Use '+' on the subclass attribute definition
 has '+name' => (
  ...
);

 Various properties can be changed
 default, coerce, required, documentation, lazy, 

isa, handles, builder, metaclass, traits
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Sontaran Names
 Many aliens don't have names
 The 'name' attribute in Alien.pm doesn't have 

the 'required' property
 Sontarans do use names
 package Sontaran;
has '+name' => (
  required => 1,
);
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More Types
 Attributes can also be objects
 has useragent => (
  is => 'rw',
  isa => 'LWP::UserAgent',
);

 Or a union of types
 has output => (
  is 'rw',
  isa => 'Object | Filehandle',
);
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Attribute Delegation

 Pass method calls to attributes
 Assumes the attributes are objects

 Defined using the 'handles' property
 Defined with an array or hash reference
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Delegation with Array

 Array contains list of method names
 Named methods are passed through to 

attribute object
 has useragent => (
  is => 'rw',
  isa => 'LWP::UserAgent',
  handles => [ qw( get post ) ],
);
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Delegation with Array

 $obj->get($url)

 Is now equivalent to
 $obj->useragent->get($url)
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Delegation with Hash

 Allows renaming of methods
 Hash contains key/values pairs of method 

names
 Key is our object's method name
 Value is the method name in the attribute 

object
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Delegation with Hash

 has useragent => (
  is => 'rw',
  isa => 'LWP::UserAgent',
  handles => {
    get_data  => 'get',
    post_data => 'post',
  },
);
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Delegation with Hash

 $obj->get_data($url)

 Is now equivalent to
 $obj->useragent->get($url)
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Your Turn

 Override an attribute's properties in your 
sub-class

 Add an attribute that is an object
 Delegate some methods to the attribute 

object



Constructors
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Constructors

 A constructor is a special type of method
 It is usually a class method
 It returns a new object
 Moose classes prefer named parameters
 my $karn = Dalek->new(
  name => 'Karn', accuracy => 0.99,
);
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Default Constructor

 The default Moose constructor builds an 
object from its parameters

 Checks for mandatory attributes
 Checks type constraints
 Returns an object
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Different Behaviour
 Some constructors need to do other 

processing
 Not just build an object
 Sometimes it's convenient not to use named 

parameters
 Use BUILD and BUILDARGS to override 

Moose's default behaviour
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BUILDARGS
 More flexible parameters
 Take a parameter list convert it to named 

parameters
 Commonly Daleks only need a name
 my $karn = Dalek->new(
  name => 'Karn'
);

 Why not simplify?
 my $karn = Dalek->new('Karn');
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Dalek Construction
 We can use BUILDARGS to build a list of 

named parameters
 around BUILDARGS => sub {
  my $orig = shift;
  my $class = shift;

  if (@_ == 1 and !ref $_[0]) {
    return
      $class->$orig(name => $_[0]);
  } else {
    return $class->$orig(@_);
  }
}
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Default BUILDARGS
 We use 'around' to override BUILDARGS
 Allows superclass BUILDARGS to be 

called
 Moose has a default (top level) 

BUILDARGS
 Converts named params to a hash ref

 Alien->new(name => 'Mork')
 Alien->new({name => 'Mork'})
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Announcing Your Dalek

 When a new Dalek is created we want to 
announce its name

 We can use the BUILD method
 After a new object is constructed, the 

BUILD method is called
 Use it to carry out any additional processing
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BUILD Example

 sub BUILD {
  my $self = shift;

  say $self->name . ' is born.';
}

 This method is called every time a new 
Dalek object is created

 Called after the object is constructed
 But before the new method returns
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Constructor Sequence

 BUILDARGS called
 Object constructed
 BUILD called
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Your Turn

 Add a BUILDARGS method that simplifies 
the most common use of your constructor

 Add a BUILD method



Data Types
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Moose Data Types

 Moose types are arranged in a hierarchy
 Like class inheritance

 Easy to add our own types
 Easy to convert between types
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Type Hierarchy (Top)

 Any
 Item

 Bool
 Maybe[`a]
 Undef
 Defined

 Value
 Ref
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Type Hierarchy (Value)

 Value
 Str

 Num
 Int

 ClassName
 RoleName
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Type Hierarchy (Ref)

 Ref
 ScalarRef[`a]
 ArrayRef[`a]
 HashRef[`a]
 CodeRef
 RegexpRef
 GlobRef

 FileHandle
 Object
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Parameterised Types

 [`a] marks a parameter
 Maybe[Str]
 ScalarRef[Num]
 ArrayRef[Int]

 Array elements are integers

 HashRef[Filehandle]
 Hash values are filehandles
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Defining Types

 You can define your own data types
 Add constraints to existing types
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Defining Types

 Remember that Daleks have an accuracy
 Accuracy should be less than 1

 To give the Doctor a chance

 Define your own type
 subtype 'Accuracy'
  => as 'Num'
  => where { $_ < 1 };
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Using Types

 has accuracy => (
  isa => 'Accuracy',
);

 my $dalek = Dalek->new(
  accuracy => 1
);

 “Attribute (accuracy) does not pass the type 
constraint because: Validation failed for 
'Accuracy' with value 1 at constructor 
Dalek::new”
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Type Definition Tips

 Name types within a project-specific 
namespace
 MagSol::DrWho::Accuracy

 See Moose::Types for utilities to make type 
definition easier
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Type Coercion

 Convert between types
 Automatically
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Dalek Birthdays

 Daleks like to keep track of their creation 
date

 They store it in a DateTime object
 has creation (
  is => 'ro',
  isa => 'DateTime',
);
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Dalek Birthdays

 It's hard to create a Dalek with a creation 
date

 Dalek->new(
  name => "Karn",
  creation => "2013-04-06"
)

 “2013-04-06” is not a DateTime object
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Dalek Birthdays

 Coerce a string into a DateTime
 coerce 'DateTime'
  => from 'Str'
  => via {
    DateTime::Format::Strptime->new(
      pattern => '%Y-%m-%d'
    )->parse_datetime($_)
};

 This doesn't work either
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Dalek Birthdays

 Can't coerce into a standard type
 Need to create a subtype
 That's just how Moose works
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Dalek Birthdays
 subtype 'Creation'
  as => 'DateTime';

coerce 'Creation'
  => from 'Str'
  => via {
    DateTime::Format::Strptime->new(
      pattern => '%Y-%m-%d'
    )->parse_datetime($_)
};
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Dalek Birthdays

 has creation => (
  isa => 'Creation',
  is => 'ro',
  coerce => 1,
};

 Dalek->new(
  name => "Karn",
  creation => "2013-04-06"
);
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Your Turn

 Add one of your own types to your class
 Add a type coercion to your class



Roles



8th February 2016

Inheritance

 Inheritance is a useful feature of OO
 Easy to create specialised subclasses
 Easy to construct complex hierarchies of 

classes
 Not so easy to maintain
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Multiple Inheritance

 It's possible for one class to inherit from 
many superclasses

 This can lead to “diamond inheritance”
 Class D subclasses classes B and C

 Classes B and C both subclass class A

 What happens?

 Complexity and confusion
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Roles

 Roles address this issue
 Cut-down classes that can be added into a 

class
 Roles cannot be instantiated
 A class “does” a role
 Like interfaces or mixins



8th February 2016

Roles

 Roles change the classes they are used by
 Add methods
 Add attributes
 Enforce method definition
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Killer Aliens

 Not all aliens are killers
 Need a role for those who are
 Force classes to implement a kill() method
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Killer Aliens

 package Alien::Role::Killer;

use Moose::Role;

requires 'kill';

 package Dalek;

with 'Alien::Role::Killer';
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Killer Aliens

 Now we can't use the Dalek class until we 
have defined a kill() method

 perl -MDalek -E'Dalek->new(“Karn”)

 'Alien::Killer' requires the method 'kill' to be 
implemented by 'Dalek'
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Killer Daleks

 Let's cheat slightly
 Rename exterminate() to kill()
 Now we can use the Dalek class again



8th February 2016

Counting Victims

 Remember how Daleks keep track of their 
victims?

 That behaviour really belongs in the 
Alien::Role::Killer role

 All killer aliens keep track of their victims
 They just kill in different ways
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Counting Victims

 The class shouldn't know about the role's 
attributes

 Remember this line from exterminate()
 push $self->victims, $_

 How do we deal with that?
 Use method modifiers
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Counting Victims

 In Alien::Role::Killer
 around kill => sub {
  my $orig = shift;
  my $self = shift;

  if ($self->$orig(@_)) {
    push $self->victims, $_[0];
  }
};
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Bragging About Victims

 We also had a brag() method
 Used the victims array
 Move that into Alien::Role::Killer too
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Alien::Killer
 package Alien::Role::Killer;

use 5.010;
use Moose::Role;

requires 'kill';

has victims => (
  isa => 'ArrayRef[Str]',
  is  => 'rw',
  default => sub { [] },
);



8th February 2016

Alien::Killer
 around kill => sub {
  my $orig = shift;
  my $self = shift;

  if ($self->$orig(@_)) {
    push $self->victims, $_[0];
  }
};
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Alien::Killer
 sub brag {
  my $self = shift;

  if (@{$self->victims}) {
    say $self->name . ' has killed ' .
      scalar @{$self->victims} .
      ' enemies of the '.ref($self).'s';
    say 'Their names are: ',
      join(', ', @{$self->victims});
  } else {
    say $self->name,
      ' has nothing to brag about';
  }
}



8th February 2016

Alien::Killer
 sub brag {
  my $self = shift;

  if (@{$self->victims}) {
    say $self->name . ' has killed ' .
      scalar @{$self->victims} .
      ' enemies of the '.ref($self).'s';
    say 'Their names are: ',
      join(', ', @{$self->victims});
  } else {
    say $self->name,
      ' has nothing to brag about';
  }
}
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Dalek

 package Dalek;

use Moose;

extends 'Alien';
with 'Alien::Role::Killer';

...
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Killing People
 #!/usr/bin/perl

use strict;
use warnings;

use Dalek;

my $d = Dalek->new("Karn");

foreach (1 .. 10) {
  $d->kill("Timelord $_");
}
$d->brag;
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Killing People
 $ ./killing.pl

Dalek Karn is born.
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 2 has been exterminated
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 5 has been exterminated
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
EX-TERM-IN-ATE
Timelord 9 has been exterminated
EX-TERM-IN-ATE
Timelord 10 has been exterminated
Dalek Karn has killed 4 enemies of the Daleks
Their names are: Timelord 2, Timelord 5, Timelord 9, Timelord 10



8th February 2016

Your Turn

 Write a role for your class
 Use the role from within your class
 Ensure your test programs all still work
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Nicer Aggregate Attrs

 We've seen aggregate attributes
 Array or hash

 victims is an example

 We have to know that these are references
 if (@{$self->victims})

 join ', ', @{self->victims}

 push $self->victims, $victim # Perl 5.14

 Can we make this easier?
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Nicer Aggregate Attrs

 We can add traits to aggregate attribute 
definitions

 Add simple methods to manipulate 
aggregate attributes

 Hiding complexity
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New Properties

 traits : Reference to a list of traits to add

 Trait must match attribute type
 ArrayRef / Array
 HashRef / Hash
 Etc.

 handles : Maps new class methods onto trait 
methods
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Documentation

 Moose::Meta::Trait::Native

 List of types
 High level examples

 Moose::Meta::Attribute::Native::Trait::*

 Full documentation of trait methods
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Types

 Array
 Bool
 Code
 Counter
 Hash
 Number
 String
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Easier Victim Tracking
 has victims => (
  isa => 'ArrayRef[Str]',
  is  => 'rw',
  default => sub { [] },
  traits => ['Array'],
  handles => {
    add_victim => 'push',
    all_victims => 'elements',
    count_victims => 'count',
    has_victims => 'count',
  },
);



8th February 2016

Easier Victim Tracking
 has victims => (
  isa => 'ArrayRef[Str]',
  is  => 'rw',
  default => sub { [] },
  traits => ['Array'],
  handles => {
    add_victim => 'push',
    all_victims => 'elements',
    count_victims => 'count',
    has_victims => 'count',
  },
);
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Bragging (Before)
 sub brag {
  my $self = shift;

  if (@{$self->victims}) {
    say $self->name, ' has killed ',
      scalar @{$self->victims},
      ' enemies of the '.ref($self).'s';
    say 'Their names are: ',
      join(', ', @{$self->victims});
  } else {
    say $self->name,
      ' has nothing to brag about';
  }
}
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Bragging (Before)
 sub brag {
  my $self = shift;

  if (@{$self->victims}) {
    say $self->name, ' has killed ',
      scalar @{$self->victims},
      ' enemies of the '.ref($self).'s';
    say 'Their names are: ',
      join(', ', @{$self->victims});
  } else {
    say $self->name,
      ' has nothing to brag about';
  }
}
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Bragging (After)
 sub brag {
  my $self = shift;

  if ($self->has_victims) {
    say $self->name . ' has killed ' .
      $self->count_victims,
      ' enemies of the '.ref($self).'s';
    say 'Their names are: ',
      join(', ', $self->all_victims);
  } else {
    say $self->name,
      ' has nothing to brag about';
  }
}



8th February 2016

Bragging (After)
 sub brag {
  my $self = shift;

  if ($self->has_victims) {
    say $self->name . ' has killed ' .
      $self->count_victims,
      ' enemies of the '.ref($self).'s';
    say 'Their names are: ',
      join(', ', $self->all_victims);
  } else {
    say $self->name,
      ' has nothing to brag about';
  }
}
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Killing (Before)
 around kill => sub {
  my $orig = shift;
  my $self = shift;

  if ($self->$orig(@_)) {
    push $self->victims, $_[0];
  }
};



8th February 2016

Killing (Before)
 around kill => sub {
  my $orig = shift;
  my $self = shift;

  if ($self->$orig(@_)) {
    push $self->victims, $_[0];
  }
};
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Killing (After)
 around kill => sub {
  my $orig = shift;
  my $self = shift;

  if ($self->$orig(@_)) {
    $self->add_victim($_[0]);
  }
};



8th February 2016

Killing (After)
 around kill => sub {
  my $orig = shift;
  my $self = shift;

  if ($self->$orig(@_)) {
    $self->add_victim($_[0]);
  }
};
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Your Turn

 You added an aggregate to your class earlier
 Now change it to use traits
 Make the appropriate changes to your code



Meta Programming
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Meta Object Protocol

 Moose is built on Class::MOP
 A Meta Object Protocol
 A set of classes that model a class 

framework
 Class introspection
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The Meta Object

 Access the MOP through your class's “meta” 
object

 Get it through the meta() method
 Class or object method

 my $meta = Dalek->meta;
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Querying Classes

 Class name
 $meta->name

 say Dalek->new->meta->name;

 Superclasses
 $meta->superclasses
 @super = Dalek->new->meta->superclasses;
say $super[0]->name; # Alien
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Querying Attributes

 Get list of attributes
 Each attribute is an object
 foreach my $attr (
  $meta->get_all_attributes
) {
  say $attr->name;
  say $attr->reader;
  say $attr->writer;
}
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Querying Methods

 Get a list of methods
 Each method is an object
 foreach my $meth (
  $meta->get_all_methods
) {
  say $meth->name;
  say $meth->package_name;
  say $meth->body;
}
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MOP is Read/Write

 The MOP objects aren't read-only
 You can change classes too

 Until you call make_immutable

 That's how Moose defines classes
 See Class::MOP documentation



8th February 2016

Your Turn

 Use the MOP to get information about your 
class

 Use the MOP to add an attribute and a 
method to your class

 What else can you do with the MOP?



Moose Plugins
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Moose Plugins

 Moose has a number of useful plugins
 Many in the MooseX::* namespace

 Important to pronounce that carefully

 New ones added frequently
 A survey of some of them
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Strict Constructors

 Standard Moose ignores unknown 
constructor parameters

 Dalek->new(
  name => 'Karn',
  email => 'karn@skaro.com', # huh?
)

 MooseX::StrictConstructor throws an error
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Parameter Validation

 By default Perl is not strict about parameters 
to subroutines

 Params::Validate is a useful CPAN module
 MooseX::Params::Validate is a Moose 

wrapper
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Parameter Validation
 package Foo;

use Moose;
use MooseX::Params::Validate;

sub foo {
  my ( $self, %params ) = validated_hash(
       \@_,
       bar => {
         isa => 'Str', default => 'Moose'
       },
    );
    return "Hooray for $params{bar}!";
}
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Singleton Object

 A class that only ever has one instance
 Highlander variable

 “There can be only one”
 MooseX::Singleton
 use MooseX::Singleton;
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Nicer Class Definitions

 In Moose a class is still a package
 In Moose a method is still a subroutine
 Moops adds new keywords
 Make your classes look more like classes
 Make your methods look more like methods
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Nicer Class Definitions
 class User {
  has 'name'  => ( ... );
  has 'email' => ( ... );
 
  method login (Str $password) {
     ...
  }
}

 Still considered experimental
 See also MooseX::Method::Signatures
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A Few More

 MooseX::Types
 MooseX::Types::Structures

 Easier subtype definitions
 MooseX::ClassAttributes



8th February 2016

A Few More

 MooseX::Daemonize
 MooseX::FollowPBP
 MooseX::NonMoose

 Moose subclasses of non-Moose classes
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Your Turn

 Add Moops to your class
 Try our some more plugins



Alternatives
to Moose
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Performance

 Moose is relatively heavyweight
 Adds a lot to your application
 no moose and make_immutable both help

 Moose team working on performance 
improvements

 Lightweight alternatives
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Moo

 “Minimalist Object Orientation (with Moose 
compatibility)”

 Lightweight subset of Moose
 Optimised for rapid start-up
 No meta-object

 Unless Moose is loaded
 Support for roles
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Mo

 Even smaller subset of Moose
 new

 has
 All arguments are ignored

 extends

 Sometimes that is enough
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Mouse & Any::Moose

 Mouse was an earlier light-weight Moose 
clone

 Nowhere near as light-weight as Moo
 Cut-down meta object
 Any::Moose switches between Mouse and 

Moose
 Moo is usually better
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Your Turn

 Convert your class to Moo



Further Information
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More Moose

 Moose does a lot more
 We have only scratched the surface
 Good documentation

 CPAN

 Moose::Manual::*

 Moose::Cookbook::*

 No good book yet
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Help on Moose

 Moose web site
 http://moose.perl.org/

 Mailing list
 http://lists.perl.org/list/moose.html

 IRC Channel
 #moose on irc.perl.org 



That's All Folks

• Any Questions?
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